DirectX 8 Performance

Below you can see our plot of the DirectX 8 components.

GF4 Ti4200 64 250 500 4 2 2 128 2000 113 7629 100.0% 100.0% 100.0% 100.0%
DirectX 8 and 8.1
GF4 Ti4800 300 650 4 2 2 128 2400 135 9918 120.0% 130.0% 120.0% 123.3%
GF4 Ti4600 300 600 4 2 2 128 2400 135 9155 120.0% 120.0% 120.0% 120.0%
GF4 Ti4400 275 550 4 2 2 128 2200 124 8392 110.0% 110.0% 110.0% 110.0%
GF4 Ti4800 SE 275 550 4 2 2 128 2200 124 8392 110.0% 110.0% 110.0% 110.0%
GF4 Ti4200 8X 250 514 4 2 2 128 2000 113 7843 100.0% 102.8% 100.0% 100.9%
GF4 Ti4200 64 250 500 4 2 2 128 2000 113 7629 100.0% 100.0% 100.0% 100.0%
GF4 Ti4200 128 250 444 4 2 2 128 2000 113 6775 100.0% 88.8% 100.0% 96.3%
8500 275 550 4 2 1 128 2200 69 8392 110.0% 110.0% 61.1% 93.7%
9100 Pro 275 550 4 2 1 128 2200 69 8392 110.0% 110.0% 61.1% 93.7%
9100 250 500 4 2 1 128 2000 63 7629 100.0% 100.0% 55.6% 85.2%
8500 LE 250 500 4 2 1 128 2000 63 7629 100.0% 100.0% 55.6% 85.2%
9200 Pro 300 600 4 1 1 128 1200 75 9155 60.0% 120.0% 66.7% 82.2%
GF3 Ti500 240 500 4 2 1 128 1920 54 7629 96.0% 100.0% 48.0% 81.3%
9000 Pro 275 550 4 1 1 128 1100 69 8392 55.0% 110.0% 61.1% 75.4%
GeForce 3 200 460 4 2 1 128 1600 45 7019 80.0% 92.0% 40.0% 70.7%
9000 250 400 4 1 1 128 1000 63 6104 50.0% 80.0% 55.6% 61.9%
9200 250 400 4 1 1 128 1000 63 6104 50.0% 80.0% 55.6% 61.9%
GF3 Ti200 175 400 4 2 1 128 1400 39 6104 70.0% 80.0% 35.0% 61.7%
9250 240 400 4 1 1 128 960 60 6104 48.0% 80.0% 53.3% 60.4%
9200 SE 200 333 4 1 1 64 800 50 2541 40.0% 33.3% 44.4% 39.2%
* RAM clock is the effective clock speed, so 250 MHz DDR is listed as 500 MHz.
** Textures/Pipeline is the maximum number of texture lookups per pipeline.
*** NVIDIA says their GFFX cards have a "vertex array", but in practice it generally functions as indicated.
**** Single-texturing fill rate = core speed * pixel pipelines
+ Multi-texturing fill rate = core speed * maximum textures per pipe * pixel pipelines
++ Vertex rates can vary by implementation. The listed values reflect the manufacturers' advertised rates.
+++ Bandwidth is expressed in actual MB/s, where 1 MB = 1024 KB = 1048576 Bytes.
++++ Relative performance is normalized to the GF4 Ti4200 64, but these values are at best a rough estimate.

No weighting has been applied to the DirectX 8 charts, and performance in games generally falls in line with what is represented in the above chart. Back in the DirectX 8 era, NVIDIA really had a huge lead in performance over ATI. The Radeon 8500 was able to offer better performance than the GeForce 3, but that lasted all of two months before the launch of the GeForce 4 Ti line. Of course, many people today continue running GeForce4 Ti cards with few complaints about performance - only high quality rendering modes and DX9-only applications are really forcing people to upgrade. For casual gamers, finding a used GF4Ti card for $50 or less may be preferable to buying a low-end DX9 card. It really isn't until the FX5700 Ultra and FX5600 Ultra that the GF4Ti cards are outclassed, and those cards still cost well over $100 new.

ATI did have one advantage over NVIDIA in the DirectX 8 era, however. They worked with Microsoft to create an updated version of DirectX; version 8.1. This added support for some "advanced pixel shader" effects, which brought the Pixel Shader version up to 1.4. There wasn't anything that could be done in DX8.1 that couldn't be done with DX8.0, but several operations could be done in one pass instead of two passes. Support for DirectX 8 games was very late in coming, however, and support for ATI's extensions was, if possible, even more so. There are a few titles which now support the DX8.1 extensions, but even then the older DX8.1 ATI cards are generally incapable of running these games well.

It is worth noting that the vertex rates on the NVIDIA cards are calculated as 90% of the clock speed times the number of vertex pipelines, divided by four. Why is that important? It's not, really, but on the FX and GF6 series of cards, NVIDIA uses clock speed times vertex pipelines divided by four for the claimed vertex rate. It could be that architectural improvements made the vertex rate faster. Such detail was lacking on the ATI side of things, although 68 million vertices/second for the 8500 was claimed in a few places, which matches the calculation used on NVIDIA's DX9 cards. You don't have to look any further than such benchmarks as 3DMark01 to find that these theoretical maximum are never reached, of course - even with one light source and no textures, the high polygon count scene doesn't come near the claimed rate.

Number nine… Number nine… Seven, seven for n-n-no tomorrow
Comments Locked

43 Comments

View All Comments

  • Myrandex - Monday, September 6, 2004 - link

    We can get some Matrox Parhelia action in there too to go along with the missing 3DFS =) I am wondering what 'Argon' is under the AMD platform (listed with the K6 CPUs). I never remember hearing an Argon codename or anything.
    Sweet article though.
    Jason
  • CrystalBay - Monday, September 6, 2004 - link

    Very nicely done...
  • jshaped - Monday, September 6, 2004 - link

    missing option - 3DFX !!!
    ye old 3DFX how thee has served me so well

Log in

Don't have an account? Sign up now