Hooray, AMD is Overclockable Again

Since the introduction of the B3 stepping Phenom that solved the TLB bug (along with improved yields), overclocking a Phenom has been a fairly painless process. This is especially true with the Black Edition series and a well designed motherboard based on the 790FX, 790GX, or 780a chipsets. While the Phenom has not offered the same overclocking headroom as the latest Penryn processors that typically offer a 1GHz improvement on the middle to upper range processors with air-cooling, it is not uncommon to see the Phenom BE series offering a 600~800MHz improvement in clock speeds.

AMD has proven in early demonstrations that the Phenom II x4 will offer overclocking headroom similar to the Penryn series. Early production sample processors have clocked anywhere from 3.9GHz on air to 4.4GHz on water and all the way up to 6.3GHz on LN2. We have matched their results on air-cooling and been impressed with the potential headroom offered by the new 45nm manufacturing process on extreme cooling setups. In fact, the latest retail steppings that AMD displayed this past week showed significant improvements in overclocking headroom compared to the press samples we utilized. Our 940 topped out at 3.9GHz, which is not bad, but after reviewing AMD’s results and seeing some early retail numbers on the forums, the expectation level for air-cooling is now set to the 4.1GHz range with the 920 hitting 3.8~3.9GHz on the right motherboard.

We have retail processors arriving shortly for additional overclocking tests (we will push HTT/NB settings); in the meantime, we have some interesting numbers to present with our press samples. In our overclocking tests today we are utilizing the Phenom II X4 940, Phenom 9950 Black Edition 125W, Core 2 Q9550, and the Core i7 920. Besides having a strong processor, a well-engineered motherboard, premium memory, excellent cooling, and proper power supply are all essential elements in obtaining stable and high clock speeds when overclocking.

With that in mind, we are utilizing the DFI LP DK 790FXB-M2RSH (790FX), ASUS Maximus II Formula (P45), and DFI LP UT X58-T3eH8 (X58) motherboards for testing. We also tossed in the Corsair HX1000 power supply along with memory from Corsair and G.Skill featuring their TR3XGG1600C8D 6GB DDR3-1600 and F2-8800CL5D-4GBPI DDR2-1100 4GB kits respectively. The balance of the test system consists of a WD Caviar Black 1TB HD, Blu-ray drives from Sony and LG, Vista 64 Ultimate, and our ABS Canyon 695 case.

In a twist from our normal overclocking results, we decided to utilize the retail air-coolers from Intel and AMD to provide a more realistic out-of-box experience when overclocking. We based today’s test results on how high we could overclock on stock voltages and then by increasing voltages until we ran out of cooling headroom with the retail coolers.

Processor Highest Overclock (Stock Voltage) Highest Overclock (Overvolted) % Increase over stock Overvolted Vcore
AMD Phenom II X4 940 (3.0GHz - 1.32V) 3.2GHz 3.9GHz 30% 1.52V
AMD Phenom 9950 BE (2.6GHz - 1.26V) 3.03GHz 3.38GHz 30% 1.45V
Intel Core i7-920 (2.66GHz - 1.32V) 3.83GHz 4.0GHz 50% 1.35V
Intel Core 2 Quad Q9550 (2.86GHz - 1.22V) 3.48GHz 3.91GHz 38% 1.35V

We disabled the power management features and manually set the voltages to stock values. Leaving the BIOS settings at Auto will generally result in the BIOS auto-leveling voltages to handle the increased clock speeds for the processor, memory, and bus speeds. We did not get very far with our particular 940 sample as it only reached 3.2GHz resulting in a dismal 7% increase in clock speed. With the exception of the PCMark Vantage TV/Movies test suite and our Flight Simulator X benchmark, this 940 processor passed all other tests at 3.45GHz. The Phenom 9950BE had a 17% increase in clock speed while the i7 920 managed a stunning 50% improvement in clock speed. The E0 stepping Q9550 managed a 23% improvement in core speed.

In our second test, we manipulate voltage settings ranging from the normal VCore/VDimm to VTT/IOH/PCIe until we reached the load limits on the retail air-coolers. Higher-end air-coolers improved clock speeds slightly (3~5%) while dropping core temperatures up to 9C in certain cases.

The clocking situation improved greatly with our 940 once VCore rose to a final 1.52V. We actually hit 4GHz but needed 1.58V to do it. This resulted in a few crashes due to temperatures, but we also noticed our particular CPU sample just was not stable at 4GHz+ even with additional voltages and cooling. The results for the two Intel processors are simply superb in this particular test with the 9950BE managing a respectable 30% improvement in clock speeds, matching that of the Phemom II percentage wise.

Phenom vs. Phenom II - Clock for Clock The Test
Comments Locked

93 Comments

View All Comments

  • Proteusza - Thursday, January 8, 2009 - link

    No, I said I hoped it could at least compete with a Core 2 Duo.

    if its too much to hope that a 2 year younger, 758 million transistor CPU could compete clock for clock with a first gen Core 2 Duo, then AMD has truly fallen to new lows. It has more transistors than i7, and yet it cant compete with a Core 2 Duo let alone i7. What happened to the sheer brilliance of the A64 days? It could beat the pants off any Pentium 4. Now the best AMD can do is barely acceptable performance at a higher clockspeed than Intel needs, all the while using a larger die than Intels.

    This keeps them in the game, but it means I wont bother buying one. Why should I?
  • coldpower27 - Thursday, January 8, 2009 - link

    Those days are over, their success was also contigent with Intel stumbling a bit and they did that with P4, with Intel firing on all cylinders, AMD at acceptable is just where they are supposed to be.
  • Denithor - Thursday, January 8, 2009 - link

    It wasn't so much of a stumble, more like a face-plant into a cactus. Wearing shorts and a tshirt.

    Intel fell flat with Netburst and refused to give up on it for far too long (Willamette -> Northwood -> Prescott -> Cedar Mill). I mean, the early days of P4 were horrible - it was outperformed by lower-clocked P3 chips until the increased clockspeed was finally too high for architectural differences to negate.

    Into this mix AMD tossed a grenade, the A64 - followed by the X2 on the same architecture. With its IMC and superior architecture there was no way Netburst could compete. Unfortunately, AMD hasn't really done anything since then to follow through. And even today's PII isn't going to change things dramatically for them, they're still playing second fiddle to Intel's products (which means they're forced into following Intel's lead in the pricing game).
  • JKflipflop98 - Thursday, January 8, 2009 - link

    Damn it feels good to be a gangsta ;)
  • Kob - Thursday, January 8, 2009 - link

    Thanks for the meaningful comparison with such a wide range of processors. However, I wonder why the benchmarks are so much tilted toward the graphics/gaming world. I think that many in the SOHO world will benefit from test results of other common applications/fields such as VS Compilation, AutoCAD manipulation, Encryption, simple database indexing and even a Chess game.
  • ThePooBurner - Thursday, January 8, 2009 - link

    In the article you compare this to the 4800 series of GPUs. I actually see this as the 3800 series. It works out perfectly. The 2900 came along way late and didn't deliver, used to much power, didn't overclock well, and was just all around a looser of a card. Then the 3800 came along. Basically the same thing, but with a die shrink that allowed it to outstretch, just enough, it's predecessor. It was the first card where they got the mix right. After that came the 4800 with a big boost and even more competition. This is what i now see happening with the CPU line. The Phenom 1 was the 2900, and the Phenom II is the 3800. Getting the mix right and getting ready for the next big swing. But, as you point out, Intel isn't likely to sit back, and we can all agree that they are a much different competitor than Nvidia is.
  • Denithor - Thursday, January 8, 2009 - link

    ...and just like the 3800 series, it falls just short of the target.

    Remember? The 3870 couldn't quite catch the 8800GT and the 3850 couldn't quite match the 9600GT. While they weren't bad cards, they unfortunately also didn't give AMD the muscle to set pricing where they wanted it, instead they had to put pricing in line with how nVidia priced their offerings.

    Same is happening here, with AMD pricing their chips in line with Intel's Q9400/Q9300 processors. And they may have to drop those prices if Intel cuts the Q9550/Q9400 down another peg.
  • Griswold - Friday, January 9, 2009 - link

    Rubbish theory. First of all, these cards were actually available whereas the 8800GT was in extreme short supply and thus much more expensive for many weeks, even into 2008, because it literally made everything else nvidia had to offer obsolete. I couldnt get one and settled for a 3870 for that reason.

    Secondly, the 9600GT? Do you realize how much later that card came to the game than the 3850? It hit the market near the end of february. Thats almost 3 months after the launch of the 38xx part.

    The whole comparison is silly.
  • ThePooBurner - Friday, January 9, 2009 - link

    The 3800 line wasn't ever meant to beat the 8800 line. It just wasn't in the cards. It's purpose was to get the reins back under control. Cut the power and get back to a decent power/performance ratio as well as get equal power to a previous generation in a smaller package to help improve margins. It was a stage setter. From the first time i read about it i knew that it was just a setup for something more, something "bigger and better" that was going to come next. And then the 4800 came along and delivered the goods. I get this same feeling reading about the Phenom II. It's setting the stage. Getting about the same power (a small bump, just like the 3870 over the 2900) in a smaller package, a better power/performance ratio, etc.. This is simply a stage setting for the next big thing. The next CPU from AMD after this one is going to deliver. I'm sure of it.
  • Kougar - Thursday, January 8, 2009 - link

    If you tried Everest and Sandra, what about CPU-Z's cache latency tool? It's not part of the CPU-Z package anymore, but they still offer it. Link: http://www.cpuid.com/download/latency.zip">http://www.cpuid.com/download/latency.zip

    I thought this tool was very accurate, or is this not the case? It even detected the disabled L3 cache on a Northwood that turned out to be a rebadeged Gallatin CPU.

Log in

Don't have an account? Sign up now