GlobalFoundries – Expanding to Meet Demand

It’s been about a year since we last had a serious discussion with GlobalFoundries. Last CES, they were relatively recently separated from AMD and we didn’t have a whole lot to report; 12 months later, there’s a lot more going on. They are now doing full production of 45nm and 40nm chips, the latter going into many of the other electronics devices we use on a regular basis. Where AMD and Intel have lived on the 65nm, 45nm, and now 32nm nodes, most of the other IP developments are happening on the so-called half-nodes. Smartphones and their related technologies are the big one, and GF is working with many of the major players—Qualcomm, ST, ARM, and others. GlobalFoundries now has 300mm fabs in Germany, New York, and Singapore with additional 200mm fabs in Singapore; all told there are 12 locations with approximately 10,000 employees.

One of the big questions last year was how GlobalFoundries would handle the needs of other fabless semiconductor companies. The acquisition of Chartered Semiconductor increased their presence in a big way, also giving GF fabrication facilities in Singapore. While AMD continues to use nearly all of the 45nm capacity, the 40nm production has a long list of partners. The Dresden fab 1 is adding capacity and they’re pushing up to 80,000 wafers per month. The upstate New York fab 8 construction continues to progress, and demand for their services is great enough that GF has already begun working to expand the facility before the current construction is even complete! Fab 8 should come online in 2013, with production focused on 22/20nm output and capacity for around 60,000 wafers per month.

Right now, GlobalFoundries is entering full production mode for 32nm, with AMD’s Llano chips scheduled to be the first market solution to use the process. Later this year, AMD will also launch their Bulldozer cores on the 32nm process. In a similar vein, the 28nm node uses the same gate stack and will leverage the learning of their x86/32nm ramp. Qualification and production of 28nm will continue over the coming year, with plenty of new 28nm devices to come. One of the interesting points GF brought up is that in the past, doing test SRAM wafers has been the common practice for ironing out the glitches in a new process. SRAM wafers produce regular grids where errors are easy to detect; the problem is that complex logic stresses the latest process technology in a different way. To further help with process refinements, GF also runs a test SoC ARM Cortex A9 microprocessor design through the pipeline. The results of this test wafer not only help them find and fix problems, but they also give a better idea of how chips on the new process perform. The following slide summarizes what they’ve seen so far.

Bumping typical clock speeds from 1.5 to 2.0GHz for the lower power designs, and from 2.0 to 2.5GHz on higher performance chips is good, but even more importantly GF saw power requirements drop up to 30%. Providing 25-33% more performance using 30% less power (and a 100% increase in standby battery life) will be key to enabling the next generation of mobile devices, and we should continue to see a roughly two-fold improvement in performance at a given power envelope every couple of years. Over the course of the year we should see a major transition from 45nm to 32nm for AMD solutions, while the other devices should experience a similar transition from 40nm to 28nm.

GF looks to be doing well, and they are looking like a viable alternative to TSMC for companies looking for fabrication facilities. They have technologies ready for all the electronics segments, from CPUs and microprocessors to smartphones and DTV. They’re also looking at opportunities in the MEMS (Micro Electro Mechanical Systems, i.e. DLP, optical switches) and 3D stacking. Over the next two years, they should more than double their 300mm wafer capacity, and continue R&D into future technologies.

Moving beyond 32nm and 28nm, GlobalFoundries is well into the research and design phase on their 22nm and 20nm nodes. We asked about plans beyond 20nm, and GF says that the current planar transistor commonly used in today’s microprocessors should still be good for a few years. After that, they expect the next five or so generations of process refinements to move to more of a vertical arrangement for the transistor layout. Every so often the naysayers inevitably rear up and claim we’re reaching the end of what we can achieve with semiconductor technology. First it was getting below 1 micron, but we’ve long since smashed that barrier and are moving steadily towards the 1nm mark. How small can we go? No one is willing to call it quits yet at GF, and we expect to see additional creative solutions as we run into technological hurdles.

AMD Meetings: APUs Make a Big Splash
Comments Locked


View All Comments

  • Christobevii3 - Monday, January 10, 2011 - link

    I've run an asus 790fx am2+ with sb600 for 3 years now. I can still update the bios and run a 6 core phenom now. It started witha 5000+ x2. To be able to still upgrade an intel this day you'd have to had waited for the x58 to be out which is nearing 2 years but dies pretty much now.

    Core 2's you had two busses unless you waited for the p35 or bought the expensive x48 board and again at most you probably got 2 years out of them.

    I'll wait for bulldozer to see instead of intels sandy bridge serving up $170 mobos that only have 8x/8x pci-e configs.
  • azguy90 - Wednesday, January 12, 2011 - link

    Bulldozer isn't any better for upgrading. Bulldozer CPUs are going to require an AM3+ motherboard; so your upgrade path is about the same as Sandy Bridge. You will be able to put older chips in the new boards, but not new chips in old boards.
  • nuudles - Friday, January 7, 2011 - link

    Bulldozer should have been released now, AMD showed how much it hurts if you are late to the party by getting a 6 month head start in dx11 and therefore completely dominating dx11 marketshare. Unfortunately it is much harder keeping up with Intel than Nvidia...

    Hopefully Llano is a homerun for them as the mobile space is more lucrative than desktops. Unfortunately they are even further behind with their mobile cpus thankfullythan the desktop ones. Hopefully power gating will show big battery life gains and the GPU will be strong enough to make anything other than top end discrete mobile cards obsolete (to make up for worse cpu perf between athlon ii + tweaks and sandy bridge).

    Another beef is they should have had something to compete with optimus by now, they must have had 6 months to build support into the 6000 series! Either that or get their cards to draw rediculously low amounts at idle through power gating all but 1 alu or something like that (if that is possible).
  • medi01 - Friday, January 7, 2011 - link

    It wasn't that nVidia was 6 month late, but that on top of being 6 month late, they created power hungry monsters with so-so performance.

    If Buldosers do perform well, delay won't matter much. If they don't, ouch, AMD (unlike nVidia who can simply punch editors harder, for better reviews, comparing stock clocked GPUs to cherry picked overclocked, cough) can't really afford that.
  • shtldr - Friday, January 7, 2011 - link

    "Another beef is they should have had something to compete with optimus by now"

    I've had it for like half a year. It's called switchable graphics.

    Acer 3820TG, switchable between HD 5650 and i5 integrated graphics.
  • nuudles - Friday, January 7, 2011 - link

    yes it is switchable, but not dynamic like optimus
  • YukaKun - Friday, January 7, 2011 - link

    Asus K40AB line bro. 2009 and still kicking besides Optimus.

    AMD just fails hard at marketing and positioning their products sometimes =/

  • nuudles - Friday, January 7, 2011 - link

    Luckily for AMD we are at a point where even a low to midrange cpu is fast enough for most applications, very few consumers would notice a performance difference between something like an Athlon ii x4 and an i5 2400 in most of their programs.

    Even in games the difference is not huge, so if they strike the right performance with the integrated GPU and let the GPU and CPU work well alongside each other (openCL on the gpu for big performance gains in highly parallel workloads) they might just have a winner.

    I would much rather get athlon ii x4 or phenom ii x4 cpu performance levels together with hd5670/5750 gpu performance levels than i7 980 with hd 5450/5570.
  • sirmo - Friday, January 7, 2011 - link

    """Right now, GlobalFoundries is entering full production mode for 32nm, with AMD’s Llano chips scheduled to be the first market solution to use the process. Later this year, AMD will also launch their Bulldozer cores on the 32nm process."""

    Everything we've seen so far said Bulldozer was going to be first 32nm product in Q2 and Llano was going to be later? Why the sudden change?
  • JarredWalton - Friday, January 7, 2011 - link

    Maybe in the past Bulldozer was coming first, but everything I've heard for the past few months was: Brazos first, Llano seconds, Bulldozer third. Probably the use of K10.5 with HD 5600 to make Llano on 32nm was easier than a completely new architecture. What really worries me is that there were some hidden undertones in conversations that make me think desktop Bulldozer may not even get out in force until 2012. I really hope I'm imagining things and they get the chips out more like Q3'11.

Log in

Don't have an account? Sign up now