Introduction

If desktop graphics hardware can be more than a little confusing, deciphering performance of mobile graphics parts can be (and has historically been) an absolute nightmare. Way back in the day it was at least fairly easy to figure out which desktop chip was hiding in which mobile kit, but both AMD and NVIDIA largely severed ties between mobile and desktop branding. They may not want to readily admit that, and in the case of certain models they still pretty heavily rely on the cachet associated with their desktop hardware, but it's by and large true. So to help you make sense of mobile graphics, we present to you the first in what will hopefully be a regular series of guides.

I started putting guides like this one together back at my alma mater NotebookReview, and they've always been pretty well-received. It's really not hard to understand why: while NVIDIA and AMD are usually pretty forthcoming with the specs of their desktop kit, they've historically been pretty cagey about their notebook graphics hardware. As a result, sites like this one have had to sift through information about different laptops, compare notes with other sites and readers, and eventually compile the data. Forums will light up with questions like "can this laptop play xyz?"

Thankfully, the advent of DirectX 11 drastically simplified my job. Whenever shader models or even entire DirectX versions were bifurcated, complication followed suit, but with DirectX 11 pretty much everybody is on board with the same fundamental feature sets, and AMD and NVIDIA both support their respective technologies across the board. Intel remains the odd man out, as you'll see.

We'll break things down into three categories. The first is integrated graphics, which interestingly has gone entirely on-package and even on-die over the past year. It's surprising how fast that change really occurred. Coupled with NVIDIA's exit from the chipset business, we're strictly looking at Intel and AMD here. The second and third are dedicated to AMD and NVIDIA's mobile lines. Wherever possible we'll also link you to a review that demonstrates the performance of the graphics hardware in question. And note that when we talk about the number of shaders, CUDA cores, or EUs on a given part, that these numbers are ONLY comparable to other parts from the same vendor; 92 of NVIDIA's CUDA cores are not comparable to, say, 160 shaders from an AMD Radeon.

Integrated Graphics

"Too Slow to Play" Class: Intel HD Graphics (Arrandale), Intel Atom IGP, AMD Radeon HD 4250
Specs aren't provided because in this case they aren't really needed: none of these integrated graphics parts are going to be good for much more than the odd game of Unreal Tournament 2004. Intel has had a devil of a time getting their IGP act together prior to the advent of Sandy Bridge, while AMD's Radeon HD 3000/3100/3200/4200/4225/4250 core (yes, it's all basically the same core) is really showing its age. Thankfully, outside of Atom's IGP, all of these are on their way out. As for gaming on Atom, there's always the original StarCraft.

Intel HD 3000 (Sandy Bridge)
12 EUs, Core Clock: Varies
With Sandy Bridge, Intel was able to produce an integrated graphics part able to rival AMD and NVIDIA's budget entries. In fact, in our own testing we found the HD 3000 able to largely keep up with AMD's dedicated Radeon HD 6450 and to a lesser extent the 6470, and NVIDIA's current mobile lineup generally doesn't extend that low (likely excepting the GT 520M and GT 520MX). That said, there are still some caveats to the HD 3000: while Intel's questionable driver quality is largely behind it, you may still experience the odd compatibility issue from time to time (when Sandy Bridge dropped, Fallout 3 had an issue), and more punishing games like Mafia II and Metro 2033 will be largely out of its reach. The clocks on the HD 3000 also vary greatly, with a starting clock of 650MHz for mainstream parts, 500MHz for low voltage parts, and just 350MHz for ultra low voltage parts. Turbo clocks get even weirder, ranging anywhere from 900MHz to 1.3GHz depending on the processor model. Still, it's nice to not have to roll your eyes anymore at the suggestion of doing some casual gaming on Intel's integrated hardware. (Sandy Bridge Review)

AMD Radeon HD 6250/6310 (Brazos)
80 Shaders, 8 TMUs, 4 ROPs, Core Clock: 280MHz (6250), 500MHz (6310)
In Brazos, AMD produced a workable netbook-level processor core and grafted last generation's Radeon HD 5450/5470 core onto it. The result is an integrated graphics processor with a decent amount of horsepower for low-end casual gaming, but in some cases it's going to be hamstrung by the comparatively slow Bobcat processor cores. That's perfectly fine, though, as Brazos is generally a more desirable alternative to Atom + NG-ION netbooks, offering more processor performance and vastly superior battery life. Just don't expect to do any but the most casual gaming on a Brazos-powered netbook. (HP dm1z Review)

AMD Radeon HD 6380G/6480G/6520G/6620G (Llano)
160/240/320/400 (6380G/6480G/6520G/6620G) Shaders, 20/16/12 (6480G/6520G/6620G) TMUs, 8/4 (6620G and 6520G/6480G) ROPs, Core Clock: 400-444MHz
Llano isn't out anywhere near in force yet, but we have a good idea of how the 6620G performs and expect the IGP performance to essentially scale down in such a way that the model numbers are fairly appropriate. The long and short of Llano is that the processor half pales in comparison to Sandy Bridge, but the graphics hardware is monstrous. Gamers on an extreme budget are likely to be well-served by picking up a notebook with one of AMD's A6 or A8 processors in it, with Llano promising near-midrange mobile graphics performance. (Llano Mobile Review)

AMD Radeon HD 6000M Graphics
Comments Locked

85 Comments

View All Comments

  • Iketh - Tuesday, July 5, 2011 - link

    GT555M "B" is an option in the Dell XPS line
  • anotherfakeaccount - Wednesday, July 6, 2011 - link

    This is true ^^
  • anotherfakeaccount - Wednesday, July 6, 2011 - link

    The Dell XPS 17 ONLY btw
  • zackyy - Wednesday, July 6, 2011 - link

    Only on the 17inch brick
  • barmalej - Wednesday, July 6, 2011 - link

    there is GT 555M "B" with 128bit bus (Clevo Clevo W150HR), and also GTX 570M uses 192bit memory bus
  • Dustin Sklavos - Wednesday, July 6, 2011 - link

    Ack, thank you, fixed it.
  • marc1000 - Wednesday, July 6, 2011 - link

    ack?

    network terminology now? lol
  • Meaker10 - Thursday, July 7, 2011 - link

    I don't see it fixed. Also the 144 shader part with a 128bit mem bus has 16 Rops rather than 24 and is far more common than the GDDR5 part and have been around in clevo and (more importantly) Acer machines (who are the largest notebook maker after all) for far longer.
  • Althernai - Wednesday, July 6, 2011 - link

    Just a word of warning about AMD GPUs in the latest Sandy Bridge laptops: AMD has moved from their manual GPU switching to a muxless, automatic switchable graphics scheme similar to Optimus, except that it doesn't work nearly as well. In particular, OpenGL applications (MineCraft, much of Adobe's content creation suite, etc.) will always run on the integrated GPU, regardless of what the user tries to force them to do.

    They tried to pull this trick without telling anyone and now there is a lot of angry people who got a laptop with a graphics card that refuses to work for their purposes:
    http://h30434.www3.hp.com/t5/Notebook-Display-and-...
    http://en.community.dell.com/support-forums/laptop...
    http://forum.lenovo.com/t5/ThinkPad-Edge/ATI-GPU-d...

    It's really a pity too because the combination of the 6770M and Sandy Bridge with switchable graphics is the best out there if you need a decent CPU, good battery life and a powerful GPU, but the latter only works for DirectX.
  • Wolfpup - Wednesday, July 6, 2011 - link

    Besides that, they can't use normal drivers on Intel CPUs either.

    I *HATE* all this switchable graphics stuff. As though it weren't a minor miracle this stuff worked at all, we're going to add all sorts of complexity to it?!?

Log in

Don't have an account? Sign up now