Board Features

The ASRock Rack EPYCD8-2T is a single socket LGA 4094 ATX motherboard designed for the workstation and server market. It has compatibility with both the AMD EYPC 7001 and 7002 family, which means this model supports up to 64 cores. On the memory front, the EYPCD8-2T has eight memory slots with support for up to 1 TB of DDR4-3200 system memory including both LRDIMM or RDIMM. RDIMM support is limited to 32 GB, 16 GB, and 8 GB modules, while LRDIMM supported includes 128 GB and 64 GB modules. Users can install up to nine SATA devices with two miniSAS ports which offer four ports each, and a single SATA DOM connector. Also present is two PCIe 3.0 x4 M.2 slots which support both NVMe and SATA drives. While this board doesn't include standard U.2 ports, ASRock Rack has included two Oculink U.2 slots for users wishing to use U.2 drives. The ASRock Rack EPYCD8-2T also has seven PCIe 3.0 slots, with four full-length and three-half length slots which operate at x16/x8/x16/x8/x16/x8/x16. Each full-length PCIe 3.0 slot runs at x16, with the half-lengths limited to PCIe 3.0 x8.

ASRock Rack EPYCD8-2T ATX Motherboard
Warranty Period 3 Years
Product Page Link
Price $498
Size ATX
CPU Interface LGA 4094/SP3
Chipset SoC
Memory Slots (DDR4) Eight DDR4
Supporting 1TB ECC LRDIMM/RDIMM
Octa Channel
Up to DDR4-3200
Video Outputs 1 x D-Sub (Aspeed)
Network Connectivity Intel X550 Dual 10 G 
Realtek RTL8211E Gigabit (IPMI)
Onboard Audio N/A
PCIe Slots for Graphics (from CPU) 7 x PCIe 3.0 x16
x16/x8/x16/x8/x16/x8/x16)
PCIe Slots for Other (from PCH) N/A
Onboard SATA Nine (2 x mini SAS, 1 x SATA DOM)
Onboard M.2 2 x PCIe 3.0 x4/SATA
Onboard U.2 2 x OCuLink
USB 3.1 (10 Gbps) N/A
USB 3.0 (5 Gbps) 2 x Type-A Rear Panel
1 x Header (two ports)
USB 2.0 1 x Header (two ports)
Power Connectors 1 x 24-pin ATX
1 x 8-pin CPU
1 x 4-pin CPU
1 x 6-pin PCIe
Fan Headers 1 x CPU (6-pin)
6 x System (6-pin)
IO Panel 2 x USB 3.1 Gen1 Type-A
2 x Ethernet 10 G (Intel)
1 x D-Sub (Aspeed)
1 x Serial Port
1 x MLAN (Realtek)
1 x ID Button

ASRock is using the Aspeed AST2500 BMC controller which adds a single D-sub video output on the rear panel, while a Realtek RTL82111E Gigabit Ethernet controller is used for the boards dedicated IPMI connection. Also on the rear panel is a pair of USB 3.1 G1 Type-A ports, although users needing more USB can get an additional two USB 3.1 G1 Type-A ports, and two USB 2.0 ports from front panel headers. For the networking, the included Intel X550 dual 10 G Ethernet controller adds two Ethernet ports on the rear panel for premium networks. Finishing off the rear panel is a single serial port and an ID button which comes equipped with an LED. Adapted for premium 1U chassis, there are seven 6-pin fan headers in total, with one dedicated to a CPU cooler and six for chassis fans.

Test Bed

As per our testing policy, we take a high-end CPU suitable for the motherboard that was released during the socket’s initial launch, and equip the system with a suitable amount of memory running at the processor maximum supported frequency. This is also typically run at JEDEC subtimings where possible. It is noted that some users are not keen on this policy, stating that sometimes the maximum supported frequency is quite low, or faster memory is available at a similar price, or that the JEDEC speeds can be prohibitive for performance. While these comments make sense, ultimately very few users apply memory profiles (either XMP or other) as they require interaction with the BIOS, and most users will fall back on JEDEC supported speeds - this includes home users as well as industry who might want to shave off a cent or two from the cost or stay within the margins set by the manufacturer. Where possible, we will extend out testing to include faster memory modules either at the same time as the review or a later date.

For direct comparisons with consumer boards, we're using a 16-core processor.

Test Setup
Processor AMD EPYC 7351P 180W, $774
16 Cores, 32 Threads, 2.4 GHz (2.9 GHz Turbo)
Motherboard ASRock EPYCD8-2T (BIOS 1.50)
Cooling Noctua U14S TR4-SP3
Power Supply Thermaltake Toughpower Grand 1200W Gold PSU
Memory 8x32 GB SK Hynix DDR4-2933 21-21-21
Ran at DDR4-2666
Video Card MSI GeForce GTX 1080 Gaming X 8G (1683/1822 Boost)
Hard Drive Crucial MX300 1TB
Case Open Test Bed
Operating System Windows 10 64-bit 1909

Readers of our motherboard review section will have noted the trend in modern motherboards to implement a form of MultiCore Enhancement / Acceleration / Turbo (read our report here) on their motherboards. This does several things, including better benchmark results at stock settings (not entirely needed if overclocking is an end-user goal) at the expense of heat and temperature. It also gives, in essence, an automatic overclock which may be against what the user wants. Our testing methodology is ‘out-of-the-box’, with the latest public BIOS installed and XMP enabled, and thus subject to the whims of this feature. It is ultimately up to the motherboard manufacturer to take this risk – and manufacturers taking risks in the setup is something they do on every product (think C-state settings, USB priority, DPC Latency / monitoring priority, overriding memory sub-timings at JEDEC). Processor speed change is part of that risk, and ultimately if no overclocking is planned, some motherboards will affect how fast that shiny new processor goes and can be an important factor in the system build.

Many thanks to...

We must thank the following companies for kindly providing hardware for our multiple test beds. Some of this hardware is not in this test bed specifically, but is used in other testing.

Hardware Providers
Sapphire RX 460 Nitro MSI GTX 1080 Gaming X OC Crucial MX300 +
MX500 SSDs
Corsair AX860i +
AX1200i PSUs
G.Skill RipjawsV,
SniperX, FlareX
Crucial Ballistix
DDR4
Silverstone
Coolers
Silverstone
Fans
BIOS And Software System Performance
Comments Locked

34 Comments

View All Comments

  • SampsonJackson - Monday, April 20, 2020 - link

    That is absolutely incorrect. We do it with Infiniband cards via RDMA and easily saturate multiple 100Gbps cards. Der8auer demonstrated ~28GB/s on a RAID0 using Threadripper 1st gen (~224Gbps) and was only limited by the RAID driver thread saturating a CPU core.. further scaling is possible using the inbox NVMe driver (up to endpoint/bus saturation). Are these realistic workloads? No. Is it possible? No problem.
  • vFunct - Monday, April 20, 2020 - link

    CPUs on media servers have been saturating 100G for years now. Netflix is doing that, for example. https://netflixtechblog.com/serving-100-gbps-from-...
  • vFunct - Monday, April 20, 2020 - link

    And they're delivering 200gbps now: https://wccftech.com/netflix-evaluating-replacing-...
  • brunis.dk - Monday, April 20, 2020 - link

    I think ASSRock should just rename themselves to ASRack for simplicity.
  • kobblestown - Monday, April 20, 2020 - link

    What's with the 6-pin fan connectors? Can I plug a regular 4-pin PWM fan into it?
  • dotes12 - Monday, April 20, 2020 - link

    I looked up the user manual and yes, it's keyed so that both a normal 3-pin and 4-pin fan will work with the 6-pin motherboard connector without an adapter. It appears that the extra two pins are used for a temperature sensor that's built into the fan. Per the manual, pin 5 is labeled "Sensor" and pin 6 is labeled "NC", and the custom fan speed has an option called "Smart Fan Temp Control" where you can have it increase a specific fan speed based on the temperature the fan is reporting.
  • kobblestown - Monday, April 20, 2020 - link

    Oh, that's cool. Thanks for checking it out.
  • cygnus1 - Monday, April 20, 2020 - link

    I was originally going to say "WTF are they thinking releasing such a high end AMD board in 2020 that doesn't support PCIe 4.0 when the appropriate CPU is installed. What a waste." But then I realized this board is about a year old already. As others mentioned below, the ROMED8-2T is almost the replacement for this year old board being reviewed. The biggest thing missing from that one is the x16 slots. And for whatever reason they didn't leave the x8 slots open ended to allow for x16 cards to fit.
  • WaltC - Monday, April 20, 2020 - link

    This motherboard is a cheap EPYC *server* mboard, and that is all it is...;) Keyword being "cheap"--paring down the system bus to PCIe3.x cuts the system bandwidth in half, compared with 4.0, which translates to manufacturing a lower-cost mboard relative to the layers needed to properly support the signal integrity of a PCIe4.0 system bus. A PCIe3.x system bus also requires less power than PCIex4. It's easy to forget, I suppose, that PCIe4 is *double* the bandwidth of PCIe3. But as a cheap server mboard, PCIe4 may not be a better fit than PCIe3.x.

    This "review" is a bit strange, imo...;) Not only does it directly compare different mboards, but it also compares those mboards running different CPUs, as well, as if to illustrate some obscure point. I would have done things a bit differently, like, for instance, restricting my choice of motherboards to those server boards capable of running this CPU--and *actually running* the EPYC CPU featured here...;) Maybe throw in a couple of system bandwidth tests and applications to illustrate advantages of the increased bandwidth PCIe4x brings to the table, along with extra costs, etc. Otherwise, what one winds up comparing are CPUs instead of motherboards, imo. As server mboards go, this one is not "high end" at all--it's actually a "budget" server mboard, imo--hence the compromises with system bus bandwidth, etc. Simply put, this mboard was not designed to "compete" with "enthusiast-class" retail mboards used for gaming--as should be obvious. People looking for budget-class server motherboards for EPYC-class cpus won't care about PCIe4, the "colors" used, RGB, multi-GPUs, etc. Those things add to cost and energy consumption, and, of course, superficial color schemes/RGB offer no power efficiency or performance enhancements of any kind.
  • mjz_5 - Monday, April 20, 2020 - link

    I hope it’s running the enterprise version of Windows 10 because that has better performance for high core count computers.

Log in

Don't have an account? Sign up now